
Online surveillance of critical computer systems

through advanced host-based detection

Harmonized Anomaly Detection

Techniques Thread

Shariyar Murtaza, Shayan Eskandari,

Afroza Sultana , Wahab Hamou-Lhadj

Software Behaviour Analysis Research Lab

Host-Based Anomaly Detection Working Group

Concordia, Canada

Dec 07, 2012

Contents

• Progress on kernel rootkit detection

• Progress on system call based anomaly detection for

applications

2

What is a Rootkit?

• Rootkit is a malware having several functionalities:

– Stealth processing

– Covert communication from system administrators.

– Keystroke logging

– Packet sniffing

– Backdoor shell access

– Remote attacking on networks

3

Severity of Rootkits

• Data-theft accounts for 80% of all cyber crimes

• Some recent examples of rootkits activities are:

– Bank frauds

– Disabling antivirus software

– Making a system a bot

– Stealing information

4
Source: [DARPA Technical Report, 2007], [McAfee Whitepaper, 2009]

Types of Kernel Rootkits

Kernel Rootkits

Kernel Object
Hooking (KOH)

Rootkits

Dynamic Kernel
Object

Manipulation
(DKOM) Rootkits

5

Main Types of Kernel Rootkits

KOH

• Modify control data structures

• A handler function registers its address with kernel
data structures; e.g., syscall hooking

DKOM

• Modify non-control data structures

• Manipulate internal record-keeping data within
main memory; e.g., the list of running processes

6

KOH Rootkit

Sys_call_table structure contains a set of pointers to functions implementing

various system calls. A system call can be overridden by changing pointers.

Source: [Pelaez, 2004]

7

DKOM Rootkit

Struct module is a linked list of module

objects. An LKM can be hidden by removing

its entry from this struct.

Source: [Pelaez, 2004]

8

Common Methods Used by Rootkits

Loadable Kernel Module (LKM) can replace underlying system calls with their
own version; e.g., Knark, Adore-ng

Directly patch the kernel’s virtual memory (/dev/kmem) or physical memory
(/dev/mem); e.g., SuckIT, Super User Control Kit

Directly patch the kernel’s image on hard disk (/boot/vmlinuz); e.g., Kpatch

Using virtual machine to run a fradulent system; e.g., BluePill

Using libc crashes to execute kernel instructions through stack for malicious
purpose; e.g., return-to-libc rootkits

9

Rootkit Detection and Prevention
Techniques

10

Host based
techniques

Virtualization based
techniques

External observer

based techniques

Techniques Description

Kruegel et al. [2004] Detect malicious LKMs using static analysis of LKM

binaries

Kroah-Hartman [2004] Load only RSA encrypted signed modules into

memory

Secure boot [Parno et al.,

2010;Jaeger et al.,2011].

Load a component if the hash is equal to a known-

good value

Jestin et al. [2011a] Cluster memory addresses to detect high memory

addresses related to malicious system calls

AppArmor [Bauer, 2006]

and SELinux [Smalley et

al., 2002]
Limit access to the kernel by using policies

Strider Ghostbuster [Beck

et al., 2005]

Identify hidden files and processes using normal

views

11

Host Based Techniques

Host Based Techniques:
Tools Scanning Known Places

• Kstat—/dev/kmem vs. system.map

• Kern check—system.map vs. system call table

• Chkrootkit—logs and configs

• Rootkithunter—files, ports, processes

• Rkscan—Adore, Knark

• Knarkfinder—hidden processes

• Tripwire, Samhain and AIDE—checksum based integrity

• Sleuth Kit—File system forensics tool

12

13

Techniques Description

[Garfinkel &
Rosenblum, 2003]

Enforce HIDS policies from VMM, such as signature scan
of memory, comparing commands, text comparison, etc.

[Petroni et al. 2007] Use cryptographic hashes of code and the graph of
function pointers to detect control flow (KOH) anomalies

[Wang et al. 2009] Make a copy of hooks (pointers) to a write protected
location, verify accesses and prevent KOH rootkits

[Seshadri et al., 2007]
and [Riley et al., 2008]

Prevent kernel code from unauthorized modification and
execution—targets KOH rootkits.

[Baliga et al. 2008] Prevent KOH rootkits by using the policies based on
process and file relationships

[Rhee et al. 2009] Use policies for key data structure (e.g., modification
through known functions) to detect DKOM rootkits

[Jiang et al. 2007] A technique to run anti-malware programs from outside of
an OS on a VM; e.g., antivirus

Virtualization Based Techniques

External Observer Based Techniques

• Copilot [Petroni et al., 2004], a PCI-card monitor, compares kernel
text, LKM text and function pointers to detect KOH rootkits

• Gibraltar [Baliga et al., 2011] detect KOH and DKOM rootkits by
using data structure invariants

14

Purpose Invariant Description

Detect hidden

process

run-list ⊂ all-tasks run_list is a process list used by

scheduler and all_task by others

Don’t let firewall

disable

nf_hooks[2][1].next.ho

ok == 0xc03295b0

To avoid redirection actual

address is identified

Classification of Anti-Rootkit Techniques

Type KOH DKOM

Static analysis of binary images of LKM
[Kreugel et al., 2004]

HB Yes No

Rootkit hunter [RootkitHunter] HB Yes Yes

State based control flow integrity
monitor [Petroni et al. , 2007]

VM Yes No

HookSafe [Wang et al., 2009] VM Yes No

KernelGuard [Rhee et al. 2009] VM No Yes

Gibraltor [Baliga et al., 2011] EM Yes Yes

NICKLE [Riley et al, 2008] VM Yes No

HB= Host Based; VM= Virtual Machines; and EM= External Monitor

15

Lessons Learned

Control flow integrity results in few or no false positives

DKOM rootkits can be detected by monitoring data
structures and legitimate modifier functions

Return oriented rootkits can be detected if the instructions
they push on stacks change the normal flow of execution

1

2

3

16

Challenging Solution

Monitor the call graph and data structure
modifications

Monitoring the entire control graph of the
kernel will cause a very high overhead

17

Statistics for Kernel 2.6.32.44

Description Value

Total functions in source code (approx.) 232312

Total functions excluding
documentation, scripts and drivers
(approx.)

107094

Graph size (total edges) 394212

Callers 81919

Callees 75426

18

A Routine Call Graph of the “fs” Subsystem

19

Proposed Solution:
Traffic-Based Approach

• Based on Hamou-Lhadj’s empirical studies on

identifying important components in large systems:

– High traffic vs. Low traffic components

– Only a small number of functions make the largest

number of calls

– Priority monitoring should focus on only these functions

– Secondary monitoring: Other functions can be added

as needed

20

Identifying Important Functions

• Look for functions that generate the largest number of

calls – Hamou-Lhadj’s work on identifying utilities in

large systems

• Network-based techniques: Betweeness centrality

analysis

• Look for the functions of most targeted components

• Knowledge oriented techniques: Study sensitive paths

where attacks have the highest information gain

21

Reducing Overhead Using Calling
Relationship

0

50000

100000

150000

200000

250000

300000

350000

400000

G
ra

p
h

 S
iz

e
(E

d
g

e
s

)

of Functions

Approximately half of

the functions make

majority of the calls

22

Reducing Overhead Using
Betweenness Centrality

Graph reduced to

just the nodes with

high Betweenness

Centrality

23

Reducing Overhead Using Key
Components

Distribution of 2009-2011 Linux vulnerabilities across components.

24

Vertex Framework

25

Preliminary Results

26

• Generated static and dynamic call graph for kernel

• Tested on a home grown rootkit and KBeast rootkit

– Syscall hooking, key logging, process hiding, directory

hiding, port hiding and backdoor shell access

• Both rootkits were detected immediately—unknown

functions hooked to pointers

• Some false positives due to missing edges due to

function pointers

Ongoing Tasks

• Studying the strategies for reducing

graph size

• Developing correlation algorithms

• Developing a prototype tool

• Conducting experiments with real

rootkits

27

Input For the Tracing Team

• Function calls and data structure tracing

• Notifications for global data structure modifications

• Develop a kernel stack monitor

• Develop a security mechanism against tampering of

the monitoring system

• Easy to use interface to turn on and off probes

28

System Call Based Models
For Applications

29

System Call Sequence Modeling

• Models an application’s normal behavior from

system calls sequences:

– Sliding Windows [Forrest 1997, Warrender 1999]

– Rule Based [Tandon 2003, Petrussenko 2010]

– Neural Networks [Ghosh 1999]

– Hidden Markov Models (HMM) [Hoang 2003, Hu 2009]

– Finite State Automata (FSA) [Wagner 2001, Sekar 2001]

– Variable length N-gram [Wespi 1999, Jiang 2002]

– Statistical Techniques [Ye 2001, Burgess 2002]

– Call Stack Techniques [Feng 2003]

– Bag of System Call Technique [Kang 2005]

30

Attack sequences are very

similar to the normal

system call sequences–

false positives.

Replace the system call

arguments and return

values. For example, open

a malicious file using the

system call arguments of

the “open()” system calls—
arguments and calls.

Insert some “no-op” system calls (e.g.,

read() with 0 byte parameter) between

the malicious system call to look like

the legitimate sequence—which calls
are they?

Imitate legitimate system call

sequences that execute

malicious code—which calls
are they?

Equivalent malicious

system calls. For example,

after an open(), replace a

legitimate read() with a

mmap() that reads

memory—false positives.

Limitations of

System Call

Sequence

Models

31

Research Questions

How much code coverage provides a complete learning
model to remove/reduce false positives?

How can system call and argument models be efficiently
combined?

Are there system calls more important than others?

32

How much code coverage provides a
complete learning model to

remove/reduce false positives?

33

Firefox Dataset

Test

Framework

Passing

Test

Cases

Passing

Test

Files

Firefox’s Code Coverage Avg.

System

Calls Per

Trace

Statements

(%)

Functions

(%)

XPC Shell 600 600 39.8 39.6 18,479

JS Engine 2686 2686 41.3 40.2 2,534

Mozmill 34 34 47.1 46.1 16,226

Mochitest-

a11y
1369 41 49.7 48.7 770,966

Mochitest-

chrome
1160 84 50.9 49.6 701,076

Mochitest-

browser-

chrome

2913 146 52.1 50.6 856,120

34

System Call Sequence Model

Window size = 6.

Framework

Total number of

sequences in

each framework

Total number of

unique sequences

in each framework

Percentage of

unique

sequences in

each framework

XPC Shell 11,084,489 29,871 0.27%

JS Engine 6,793,621 3,771 0.06%

Mozmill 551,516 1,106 0.20%

Mochitest-a11y 31,609,380 10,440 0.03%

Mochitest-

chrome
57,487,806 11,069 0.02%

Mochitest-

browser-chrome
124,136,624 11,595 0.01%

35

Impact of Coverage on the
Model’s completeness

Mozilla Firefox Data Coverage

0

10000

20000

30000

40000

50000

60000

70000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Number of Sequence of System Calls of Length 6 (in million)

N
u
m

b
e
r
o
f
U
n
iq

u
e
 S

e
q
u
e
n
c
e
s
 o

f
S
y
s
te

m
 C

a
ll
s
 o

f
L
e
n
g
h
t
6

xpc

js mozmil

mochi-a11y mochi-chrome
mochi-browser-chrome

• 67,852 unique sequences identified from 231,663,436 sequences

• Model size is 1,331 KB

36

How can system call and argument
models be efficiently combined?

37

Combine System Call Sequence and System Call
Argument Model

Healthy

Trace Files

Results

ResultsSystem call

arguments

Final

Result

System Call

Sequence

Based Model

System Call

Argument

Based Model

Testing

Trace

Files

System call

sequences

Harmoni

zation

38

Sys_open() Argument Model Construction

Normal

Trace

Files

Sys_open()

Argument Model

File from the

sdirectory?

sys_open(filename, flag, mode)

Extract file directory

and names

Add

Sys_open()

sequence Model
Merge

39

Are there system calls more important
than others?

40

Frequent System Calls

System Call Name Total Count Percentage

sys_write 181,115,332 78%

sys_read 9,125,195 4%

sys_llseek 5,669,487 2%

sys_fcntl64 4,358,035 2%

sys_futex 4,209,934 2%

sys_fstat64 4,209,034 2%

sys_stat64 3,603,088 2%

sys_open 2,932,515 1%

sys_gettimeofday 2,897,824 1%

sys_close 2,809,496 1%

sys_madvice 2,742,715 1%

sys_mmap_pgoff 2,612,093 1%

sys_munmap 2,068,300 1%

41

Thank you & your questions

References
– [Burgess 2002] M. Burgess, H. Haugerud, S. Straumsnes, and T. Reitan, “Measuring System Normality,” ACM Trans.

Computer Systems, vol. 20, no. 2, pp. 125-160, 2002.

– [Bhatkar 2006] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow Anomaly Detection,” Proc. IEEE Symp. Security and

Privacy (S&P ’06), May 2006.

– [Cavallaro 2011] Lorenzo Cavallaro and R. Sekar, “Taint-Enhanced Anomaly Detection”, International Conference on

Information System Security (ICISS), December 2001.

– [Cohen 1995] William W. Cohen. 1995. Fast Effective Rule Induction. In Machine Learning: Proceedings of the Twelfth

International Conference. Lake Taho, California, Morgan Kaufmann.

– [Davis 2002] Davis R. I. A. and Lovell B. C., "Improved Estimation of Hidden Markov Model Parameters from Multiple

Observation Sequences", in International Conference on Pattern Recognition, pages 168-171, Quebec City, Canada,

August 2002.

– [Denning 1987] Dorothy E. Denning, “An Intrusion-Detection Model”, IEEE Transactions On Software Engineering, Vol.

Se-13, No. 2, February 1987, 222-232. (also presented at the 1986 Symp. on Security and Privacy in Oakland,

California.) .

– [Feng 2003] Feng H., Kolesnikov O., Fogla P., Lee W. and Gong W. Anomaly Detection Using Call Stack Information.

IEEE Symposium on Security and Privacy, 2003.

– [Forrest 1996] S. Forrest, S. A. Hofmeyr, and A. Somayaji. A sense of self for unix processes. In Proceedings of the

1996 IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA, 1996. IEEE Computer Society Press.

– [Frossi 2009] A Frossi, F. Maggi, G. L. Rizzo, S. Zanero, "Selecting and Improving System Call Models for Anomaly

Detection", Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2009, Como, Italy, July 2009.

– [Ghosh 1999] Ghosh A., and Schwartzbad A. A Study in Using Neural Networks for Anomaly and Misuse Detection.

1999 USENIX Security Symposium.

– [Jiang 2002] Jiang N., Hua K., and Sheu S. Considering Both Intra-pattern and Inter-pattern Anomalies in Intrusion

Detection. Proc. Intl. Conf. Data Mining (ICDM 2002), 2002.

– [Hoang 2003] X. D. Hoang, J. Hu, and P. Bertok, “A Multi-Layer Model for Anomaly Intrusion Detection using Program

Sequences of System Calls,” Proc. 11th IEEE Int’l. Conf. Net., Sydney, Australia, Sept. 28–Oct. 1, 2003, pp. 531–36.

– [Hoang 2004] X. D. Hoang and J. Hu, “An Efficient Hidden Markov Model Training Scheme for Anomaly Intrusion

Detection of Server Applications Based on System Calls,” IEEE Int’l. Conf. Net. ’04, Singapore, Nov. 16–19, 2004, vol.

2, pp. 470–74.

– [Hofmeyr 1998] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection Using Sequences of System Calls,” J.

Computer Security, vol. 6, pp. 151-180, 1998.

References (2)
– [Hu 2009] J. Hu, Q. Dong, X. Yu, H.H. Chen: A simple and efficient hidden Markov model scheme for host-based

anomaly intrusion detection, IEEE Netw. 23(1), 42–47 (2009).

– [Jha 2001] S. Jha, K. Tan, and R.A. Maxion, “Markov Chains, Classifiers, and Intrusion Detection,” Proc. 14th IEEE

Workshop Computer Security Foundations (CSFW ’01), p. 206, 2001.

– [Kang 2005] Kang, D.-K., Fuller, D., and Honavar, V. 2005. Learning classifiers for misuse and anomaly detection using

a bag of system calls representation. In Proceedings of 6th IEEE Systems Man and Cybernetics Information Assurance

Workshop (IAW).

– [Kruegel 2003a] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the Detection of Anomalous system Call

Arguments,” Proc. European Symp. Research in Computer Security (ESORICS ’03), Oct. 2003, pp 101 – 118.

– [Kruegel 2003b] Christopher Kruegel , Darren Mutz , William Robertson , Fredrik Valeur, “Bayesian Event Classification

for Intrusion Detection”, PROCEEDINGS OF ACSAC 2003, LAS VEGAS, NV, 2003.

– [Lee 1997] Lee W., Stolfo S., and Chan P. Learning Patterns from UNIX Process Execution Traces for Intrusion

Detection. AAAI’97 workshop on AI methods in Fraud and risk management.

– [Lippmann at al 2000] Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., and Das, K. 2000. Analysis and Results of

the 1999 DARPA Off-Line Intrusion Detection Evaluation. In Proceedings of Recent Advances in Intrusion Detection.

LNCS. Springer, Toulouse, France, 162–182.

– [Maggi 2009] F. Maggi, M. Matteucci, S. Zanero. "Reducing False Positives In Anomaly Detectors Through Fuzzy Alert

Aggregation". Information Fusion, special issue on ``Information Fusion in Computer Security''. Vol. 10(4), pp. 300-311

(2009)

– [Maggi 2010] Federico Maggi, Matteo Matteucci And Stefano Zanero, “Detecting Intrusions Through System Call

Sequence And Argument Analysis”, IEEE Transactions On Dependable And Secure Computing, Vol. 7, No. 4, October-

December 2010.

– [Mahoney 2003] Mahoney, M. V., & Chan, P. K.. Learning rules for anomaly detection of hostile network traffic. In Proc.

Of International Conference on Data Mining (ICDM), 601-604, 2003.

– [Michael 2012] C. C. Michael And Anup Ghosh, Simple, State-Based Approaches To Program-Based Anomaly

Detection, ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002, Pages 203–237.

– [Mutz 2006] Darren Mutz, Fredrik Valeur, Christopher Kruegel, and Giovanni Vigna, “Anomalous System Call

Detection”, ACM Transactions on Information and System Security (TISSEC), Volume 9 Issue 1, February 2006.

– [Petrussenko 2010] Denis Petrussenko, Philip K. Chan, “Incrementally Learning Rules for Anomaly Detection”,

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS

2010).

References (3)
– [Portnoy 2001] Portnoy, L., Eskin, E., and Stolfo, S. 2001. Intrusion Detection with Unlabeled Data using Clustering. In

ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001).

– [Sekar 2001] Sekar R., Bendre M., Dhurjati D., Bollineni P. A Fast Automaton-based Method for Detecting Anomalous

Program Behaviors. IEEE Symposium on Security and Privacy (S & P), 2001.

– [Snare 2003] SNARE - System iNtrusion Analysis and Reporting Environment.

http://www.intersectalliance.com/projects/Snare.

– [Tandon 2003] G. Tandon and P. Chan, “Learning Rules from System Call Arguments and Sequences for Anomaly

Detection,” Proc. ICDM Workshop Data Mining for Computer Security (DMSEC ’03), pp. 20-29, 2003.

– [Tandon 2007] Gaurav Tandon and Philip K. Chan, “On The Learning Of System Call Attributes For Host-Based

Anomaly Detection”, International Journal on Artificial Intelligence Tools, 2007.

– [Wagner 2002] Wagner D., Soto P. Mimicry Attacks on Host-Based Intrusion Detection Systems. ACM Conference on

Computer and Communications Security, 2002.

– [Warrender 1999] C. Warrender, S. Forrest, and B.A. Pearlmutter, “Detecting Intrusions Using System Calls: Alternative

Data Models,” Proc. 1999 IEEE Symposium on Security and Privacy (S&P ’99), IEEE Computer Society, pp. 133-145,

1999.

– [Wespi 1999] Wespi A., Dacier M., and Debar H. An Intrusion-Detection System Based on the Teiresias Pattern-

Discovery Algorithm. Proc. EICAR, 1999.

– [Xu 2006] Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced Policy Enforcement: a Practical Approach to Defeat a Wide

Range of Attacks. In: USENIX Security Symposium (2006)

– [Ye 2001] N. Ye and Q. Chen, “An Anomaly Detection Technique Based on a Chi-Square Statistic for Detecting

Intrusions into Information Systems,” Quality and Reliability Eng. Int’l, vol. 17, no. 2, pp. 105-112, 2001.

References (4)
– [Burgess 2002] M. Burgess, H. Haugerud, S. Straumsnes, and T. Reitan, “Measuring System Normality,” ACM Trans.

Computer Systems, vol. 20, no. 2, pp. 125-160, 2002.

– [Bhatkar 2006] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow Anomaly Detection,” Proc. IEEE Symp. Security and

Privacy (S&P ’06), May 2006.

– [Cavallaro 2011] Lorenzo Cavallaro and R. Sekar, “Taint-Enhanced Anomaly Detection”, International Conference on

Information System Security (ICISS), December 2001.

– [Cohen 1995] William W. Cohen. 1995. Fast Effective Rule Induction. In Machine Learning: Proceedings of the Twelfth

International Conference. Lake Taho, California, Morgan Kaufmann.

– [Davis 2002] Davis R. I. A. and Lovell B. C., "Improved Estimation of Hidden Markov Model Parameters from Multiple

Observation Sequences", in International Conference on Pattern Recognition, pages 168-171, Quebec City, Canada,

August 2002.

– [Denning 1987] Dorothy E. Denning, “An Intrusion-Detection Model”, IEEE Transactions On Software Engineering, Vol.

Se-13, No. 2, February 1987, 222-232. (also presented at the 1986 Symp. on Security and Privacy in Oakland,

California.) .

– [Feng 2003] Feng H., Kolesnikov O., Fogla P., Lee W. and Gong W. Anomaly Detection Using Call Stack Information.

IEEE Symposium on Security and Privacy, 2003.

– [Forrest 1996] S. Forrest, S. A. Hofmeyr, and A. Somayaji. A sense of self for unix processes. In Proceedings of the

1996 IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA, 1996. IEEE Computer Society Press.

– [Frossi 2009] A Frossi, F. Maggi, G. L. Rizzo, S. Zanero, "Selecting and Improving System Call Models for Anomaly

Detection", Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2009, Como, Italy, July 2009.

– [Ghosh 1999] Ghosh A., and Schwartzbad A. A Study in Using Neural Networks for Anomaly and Misuse Detection.

1999 USENIX Security Symposium.

– [Jiang 2002] Jiang N., Hua K., and Sheu S. Considering Both Intra-pattern and Inter-pattern Anomalies in Intrusion

Detection. Proc. Intl. Conf. Data Mining (ICDM 2002), 2002.

– [Hoang 2003] X. D. Hoang, J. Hu, and P. Bertok, “A Multi-Layer Model for Anomaly Intrusion Detection using Program

Sequences of System Calls,” Proc. 11th IEEE Int’l. Conf. Net., Sydney, Australia, Sept. 28–Oct. 1, 2003, pp. 531–36.

– [Hoang 2004] X. D. Hoang and J. Hu, “An Efficient Hidden Markov Model Training Scheme for Anomaly Intrusion

Detection of Server Applications Based on System Calls,” IEEE Int’l. Conf. Net. ’04, Singapore, Nov. 16–19, 2004, vol.

2, pp. 470–74.

– [Hofmeyr 1998] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection Using Sequences of System Calls,” J.

Computer Security, vol. 6, pp. 151-180, 1998.

References (5)
– [Hu 2009] J. Hu, Q. Dong, X. Yu, H.H. Chen: A simple and efficient hidden Markov model scheme for host-based

anomaly intrusion detection, IEEE Netw. 23(1), 42–47 (2009).

– [Jha 2001] S. Jha, K. Tan, and R.A. Maxion, “Markov Chains, Classifiers, and Intrusion Detection,” Proc. 14th IEEE

Workshop Computer Security Foundations (CSFW ’01), p. 206, 2001.

– [Kang 2005] Kang, D.-K., Fuller, D., and Honavar, V. 2005. Learning classifiers for misuse and anomaly detection using

a bag of system calls representation. In Proceedings of 6th IEEE Systems Man and Cybernetics Information Assurance

Workshop (IAW).

– [Kruegel 2003a] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the Detection of Anomalous system Call

Arguments,” Proc. European Symp. Research in Computer Security (ESORICS ’03), Oct. 2003, pp 101 – 118.

– [Kruegel 2003b] Christopher Kruegel , Darren Mutz , William Robertson , Fredrik Valeur, “Bayesian Event Classification

for Intrusion Detection”, PROCEEDINGS OF ACSAC 2003, LAS VEGAS, NV, 2003.

– [Lee 1997] Lee W., Stolfo S., and Chan P. Learning Patterns from UNIX Process Execution Traces for Intrusion

Detection. AAAI’97 workshop on AI methods in Fraud and risk management.

– [Lippmann at al 2000] Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., and Das, K. 2000. Analysis and Results of

the 1999 DARPA Off-Line Intrusion Detection Evaluation. In Proceedings of Recent Advances in Intrusion Detection.

LNCS. Springer, Toulouse, France, 162–182.

– [Maggi 2009] F. Maggi, M. Matteucci, S. Zanero. "Reducing False Positives In Anomaly Detectors Through Fuzzy Alert

Aggregation". Information Fusion, special issue on ``Information Fusion in Computer Security''. Vol. 10(4), pp. 300-311

(2009)

– [Maggi 2010] Federico Maggi, Matteo Matteucci And Stefano Zanero, “Detecting Intrusions Through System Call

Sequence And Argument Analysis”, IEEE Transactions On Dependable And Secure Computing, Vol. 7, No. 4, October-

December 2010.

– [Mahoney 2003] Mahoney, M. V., & Chan, P. K.. Learning rules for anomaly detection of hostile network traffic. In Proc.

Of International Conference on Data Mining (ICDM), 601-604, 2003.

– [Michael 2012] C. C. Michael And Anup Ghosh, Simple, State-Based Approaches To Program-Based Anomaly

Detection, ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002, Pages 203–237.

– [Mutz 2006] Darren Mutz, Fredrik Valeur, Christopher Kruegel, and Giovanni Vigna, “Anomalous System Call

Detection”, ACM Transactions on Information and System Security (TISSEC), Volume 9 Issue 1, February 2006.

– [Petrussenko 2010] Denis Petrussenko, Philip K. Chan, “Incrementally Learning Rules for Anomaly Detection”,

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS

2010).

References (6)
– [Portnoy 2001] Portnoy, L., Eskin, E., and Stolfo, S. 2001. Intrusion Detection with Unlabeled Data using Clustering. In

ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001).

– [Sekar 2001] Sekar R., Bendre M., Dhurjati D., Bollineni P. A Fast Automaton-based Method for Detecting Anomalous

Program Behaviors. IEEE Symposium on Security and Privacy (S & P), 2001.

– [Snare 2003] SNARE - System iNtrusion Analysis and Reporting Environment.

http://www.intersectalliance.com/projects/Snare.

– [Tandon 2003] G. Tandon and P. Chan, “Learning Rules from System Call Arguments and Sequences for Anomaly

Detection,” Proc. ICDM Workshop Data Mining for Computer Security (DMSEC ’03), pp. 20-29, 2003.

– [Tandon 2007] Gaurav Tandon and Philip K. Chan, “On The Learning Of System Call Attributes For Host-Based

Anomaly Detection”, International Journal on Artificial Intelligence Tools, 2007.

– [Wagner 2002] Wagner D., Soto P. Mimicry Attacks on Host-Based Intrusion Detection Systems. ACM Conference on

Computer and Communications Security, 2002.

– [Warrender 1999] C. Warrender, S. Forrest, and B.A. Pearlmutter, “Detecting Intrusions Using System Calls: Alternative

Data Models,” Proc. 1999 IEEE Symposium on Security and Privacy (S&P ’99), IEEE Computer Society, pp. 133-145,

1999.

– [Wespi 1999] Wespi A., Dacier M., and Debar H. An Intrusion-Detection System Based on the Teiresias Pattern-

Discovery Algorithm. Proc. EICAR, 1999.

– [Xu 2006] Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced Policy Enforcement: a Practical Approach to Defeat a Wide

Range of Attacks. In: USENIX Security Symposium (2006)

– [Ye 2001] N. Ye and Q. Chen, “An Anomaly Detection Technique Based on a Chi-Square Statistic for Detecting

Intrusions into Information Systems,” Quality and Reliability Eng. Int’l, vol. 17, no. 2, pp. 105-112, 2001.

References (7)

• [Baliga et al., 2008] Baliga, A., Iftode, L., Chen, X.: Automated containment of rootkits
attacks. Computers and Security 27(7-8), 2008, pp. 323–334 .

• [Baliga et al., 2011] Baliga, A., Ganapathy, V., and Iftode, L. Detecting kernel-level rootkits
using data structure invariants. IEEE Transactions on Dependable and Secure Computing 8,
5 (2011), pp. 670 –684.

• [Bauer 2006] Bauer M. Paranoid penguin: an introduction to Novell AppArmor. Linux J 2006;
148-161

• [Beck et al, 2005] Beck, D., Vo, B., Verbowski, C.: Detecting stealth software with strider
ghostbuster. In: Proceedings of the 2005 International Conference on Dependable Systems
and Networks, DSN 2005, pp. 368–377.

• [Bratus et al., 2010] Bratus, S., Locasto, M.E., Ramaswamy, A., Smith, S.W.: Vm-based
security overkill: a lament for applied systems security research. In: Proceedings of the 2010
Workshop on New Security Paradigms, NSPW 2010, pp. 51–60. ACM, New York, 2010.

• [Carbone et al., 2009] Carbone, M.; Cui, W.; Lu, L., Lee, W., Peinado, M., Jiang, X..
Mapping kernel objects to enable systematic integrity checking. In: Proc. 16th ACM
Conference on Computer and Communications Security. 2009.

• [DARPA Technical Report, 2007] DARPA: Rootkit Detection, draft v2.10, April 26, 2007:
http://www.scribd.com/doc/53451398/6/R ootkit-Classification

49

References (8)

• [Garfinkel and Rosenblum, 2003] Garfinkel, T., Rosenblum, M.: A virtual machine
introspection based architecture for intrusion detection. In: Proc. Network and Distributed
Systems Security Symposium, vol. 1, pp. 253–285. Citeseer ,2003.

• [Jiang et al., 2007] Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through
vmmbased out of the box semantic view reconstruction, pp. 128–138 , 2007.

• [Jaeger et al., 2011] Jaeger,T.; Van Oorschot, P. C.; Wurster, G.; “Countering Unauthorized
Code Execution on Commodity Kernels: A Survey of Common Interfaces Allowing Kernel
Code Modification”, 2011

• [Jestin et al., 2011b] Jestin, J.; Anita, J; James, J. “ Rootkit Detection Mechanism: A
Survey”, Advances in Parallel Distributed Computing, Communications in Computer and
Information Science, Springer, Vol. 203, 2011, pp. 366-374

• [Jestin et al., 2011a] Jestin, J.; Anita,J.; “A Host Based Kernel Level Rootkit Detection
Mechanism Using Clustering Technique”, Trends in Computer Science, Engineering and
Information Technology, Communications in Computer and Information Science, Springer,
2011, Vol. 204, pp: 564-570

50

References

• [Kroah-Hartman, 2004] Kroah-Hartman, G.: Signed kernel modules. Linux Journal, 2004.

• [Kruegel et al., 2004] Kruegel, C., Robertson, W., Vigna, G.: Detecting kernel-level rootkits
through binary analysis. In: Computer Security Applications Conference, Annual, pp. 91–100,
2004

• [Kim & Spafford, 1994] Kim, G.H.; Spafford, E.H.: The design and implementation of tripwire: a file
system integrity checker. In: Proceedings of the 2nd ACM Conference on Computer and
Communications Security, CCS 1994, pp. 18–29. ACM, New York (1994),

• [Lanzi et al., 2009] Lanzi, A., Sharif, M., Lee, W.: K-tracer: A system for extracting kernel malware
behavior. In: Proceedings of the 16th Annual Network and Distributed System Security
Symposium, 2009.

• [Levin et al., 2005]Levine, J., Grizzard, J., Owen, H.: A methodology to detect and characterize
kernel level rootkit exploits involving redirection of the system call table. In: Proceedings of
Second IEEE International Information Assurance Workshop, pp. 107–125. IEEE, Los Alamitos
(2005)

• [McAfee Whitepaper , 2009] 2010 threat predictions, December 2009. McAfee AVERT Labs
Whitepaper.

51

References

• [McAfee, Whitepaper 2006] Rootkits, part 1 of 3: A growing threat, April 2006. McAfee
AVERT Labs Whitepaper.

• [Parno et al., 2010] Parno, B; McCune JM; Perrig A. “ Bootstrapping trust in commodity
computers. In Proc: 2010 IEEE symposium on security and privacy; 2010, p. 414-429

• [Pelaez, 2004] Pelaez, R., S.; Linux kernel rootkits: protecting the system’s “Ring-Zero” ,
May, 2004. http://www.sans.org/reading_room/whitepapers/honors/linux-kernel-rootkits-
protecting-systems_1500

• [Petroni et al., 2004] Petroni Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a
coprocessor based kernel runtime integrity monitor. In: Proceedings of the 13th Conference
on USENIX Security Symposium, SSYM 2004, vol. 13, pp. 13–13. USENIX Association,
Berkeley (2004).

• [Petroni et al., 2007] Petroni Jr., N.L., Hicks, M.: Automated detection of persistent kernel
control-flow attacks. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS 2007, pp. 103–115.

• [Rutkowska, 2006] Joanna Rutkowska, Introducing Stealth Malware Taxonomy, COSEINC
Advanced Malware Labs, Nov., 2006. http://www.scribd.com/doc/55716332/Malware-
Taxonomy

52

References

• [Rhee et al., 2009] Rhee, J., Riley, R., Xu, D., Jiang, X.: Defeating dynamic data kernel rootkit
attacks via vmm-based guest-transparent monitoring. In: International Conference on Availability,
Reliability and Security, pp. 74–81 (2009)

• [Riley et al., 2008] Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits
with vmm-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID
2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

• [Riley et al., 2009] Riley, R., Jiang, X., Xu, D.: Multi-aspect profiling of kernel rootkit behavior. In:
Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys2009, pp. 47–
60. ACM, New York (2009),

• [Smalley et al., 2002] Smalley S, Vance C, Salamon W. “Implementing SELinux as a linux security
module. Technical Report 01-043. NAI Labs; 2002.

• [Sailer et al., 2004] Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of
a tcg-based integrity measurement architecture. In: Proceedings of the 13th Conference on
USENIX Security Symposium, SSYM 2004, vol. 13, p. 16. USENIX Association, Berkeley (2004),

53

References

• [Seshadri et al., 2007] Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: A tiny
hypervisor to provide lifetimekernel code integrity for commodity OSes. In: Proceedings of
the 21st ACM Symposium on Operating Systems Principles (21st SOSP 2007), pp. 335–
350. ACM SIGOPS, Stevenson (October 2007)

• [Wang et al., 2009] Wang, Z., Jiang, X., Cui, W., and Ning, P. Countering kernel rootkits
with lightweight hook protection. In Proceedings of the ACM Conference on Computer and
Communications Security (2009), pp. 545–554.

• [Wichiman, 2009]Wichmann, R.: A comparison of several host/file integrity monitoring
programs, December 29, 2009.

• [Yin et al., 2008] Yin, H., Liang, Z., Song, D.: Hookfinder: Identifying and understanding
malware hooking behaviors. In: Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS 2008).

54

Resources for Rootkits

• http://www.phrack.org

• http://www.antiserver.it/Backdoor-Rootkit/

• http://www.l0t3k.org/tools/Rootkit/

• http://packetstormsecurity.org/UNIX/penetration/rootkits/

• http://www.securityfocus.com/

• http://www.antiserver.it/Backdoor-Rootkit/

• http://www.zone-h.org/en/download/category=23/

• http://www.rootkit.com (mostly Windows based)

• http://www.blackhat.com/html/bh-media-archives/bh-multi-media-
archives.html

Disclaimer: Presenter doesn’t take responsibility of any malicious
activity that would happen on your system when you play with these
resources ☺.

Source: [Pelaez, 2004]

55

