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What is a Rootkit?

• Rootkit is a malware having several functionalities:

– Stealth processing

– Covert communication from system administrators.

– Keystroke logging

– Packet sniffing

– Backdoor shell access

– Remote attacking on networks
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Severity of Rootkits

• Data-theft accounts for 80% of all cyber crimes

• Some recent examples of rootkits activities are:

– Bank frauds

– Disabling antivirus software

– Making a system a bot

– Stealing information
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Source: [DARPA Technical Report, 2007], [McAfee Whitepaper, 2009]    



Types of Kernel Rootkits

Kernel Rootkits

Kernel Object 
Hooking (KOH) 

Rootkits

Dynamic Kernel 
Object 

Manipulation 
(DKOM) Rootkits

5



Main Types of Kernel Rootkits

KOH

• Modify control data structures

• A handler function registers its address with kernel 
data structures; e.g., syscall hooking

DKOM

• Modify non-control data structures

• Manipulate internal record-keeping data within 
main memory; e.g., the list of running processes
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KOH Rootkit

Sys_call_table structure contains a set of pointers to functions implementing 

various system calls. A system call can be overridden by changing pointers.

Source: [Pelaez, 2004]
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DKOM Rootkit

Struct module is a linked list of module 

objects. An LKM can be hidden by removing 

its entry from this struct.

Source: [Pelaez, 2004]
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Common Methods Used by Rootkits

Loadable Kernel Module (LKM) can replace underlying system calls with their 
own version; e.g., Knark, Adore-ng

Directly patch the kernel’s virtual memory (/dev/kmem) or physical memory 
(/dev/mem); e.g., SuckIT, Super User Control Kit

Directly patch the kernel’s image on hard disk (/boot/vmlinuz); e.g., Kpatch

Using virtual machine to run a fradulent system; e.g., BluePill

Using libc crashes to execute kernel instructions through stack for malicious 
purpose; e.g., return-to-libc rootkits
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Rootkit Detection and Prevention 
Techniques

10

Host based 
techniques

Virtualization based 
techniques

External observer 

based techniques



Techniques Description

Kruegel et al. [2004] Detect malicious LKMs using static analysis of LKM 

binaries

Kroah-Hartman [2004] Load only RSA encrypted signed modules into 

memory

Secure boot [Parno et al., 

2010;Jaeger et al.,2011].

Load a component if the hash is equal to a known-

good value

Jestin et al. [2011a] Cluster memory addresses to detect  high memory 

addresses related to malicious system calls

AppArmor [Bauer, 2006] 

and SELinux [Smalley et 

al., 2002]
Limit access to the kernel by using policies

Strider Ghostbuster [Beck 

et al., 2005] 

Identify hidden files and processes using normal 

views
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Host Based Techniques:
Tools Scanning Known Places

• Kstat—/dev/kmem vs. system.map

• Kern check—system.map vs. system call table

• Chkrootkit—logs and configs

• Rootkithunter—files, ports, processes 

• Rkscan—Adore, Knark

• Knarkfinder—hidden processes

• Tripwire, Samhain and AIDE—checksum based integrity

• Sleuth Kit—File  system forensics tool
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Techniques Description

[Garfinkel & 
Rosenblum, 2003]

Enforce HIDS policies from VMM, such as signature scan 
of memory, comparing commands, text comparison, etc.

[Petroni et al. 2007] Use cryptographic hashes of code and the graph of 
function pointers to detect control flow (KOH) anomalies 

[Wang et al. 2009] Make a copy of hooks (pointers) to a write protected 
location, verify accesses and prevent KOH rootkits

[Seshadri et al., 2007] 
and [Riley et al., 2008]

Prevent kernel code from unauthorized modification and 
execution—targets KOH rootkits.

[Baliga et al. 2008] Prevent KOH rootkits by using the policies based on 
process and file relationships

[Rhee et al. 2009] Use policies for key data structure (e.g., modification 
through known functions) to detect DKOM rootkits

[Jiang et al. 2007] A technique to run anti-malware programs from outside of 
an OS on a VM; e.g., antivirus

Virtualization Based Techniques



External Observer Based Techniques

• Copilot [Petroni et al., 2004], a PCI-card monitor, compares kernel 
text, LKM text and function pointers to detect KOH rootkits

• Gibraltar [Baliga et al., 2011] detect  KOH and DKOM rootkits by 
using data structure invariants
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Purpose Invariant Description

Detect hidden 

process

run-list  ⊂ all-tasks run_list is a process list used by 

scheduler and all_task by others

Don’t let firewall 

disable

nf_hooks[2][1].next.ho

ok == 0xc03295b0 

To avoid redirection actual

address is identified



Classification of Anti-Rootkit Techniques

Type KOH DKOM

Static analysis of binary images of LKM 
[Kreugel et al., 2004]

HB Yes No

Rootkit hunter [RootkitHunter] HB Yes Yes

State based control flow integrity 
monitor [Petroni et al. , 2007]

VM Yes No

HookSafe [Wang et al., 2009] VM Yes No

KernelGuard [Rhee et al. 2009] VM No Yes

Gibraltor [Baliga et al., 2011] EM Yes Yes

NICKLE [Riley et al, 2008] VM Yes No

HB= Host Based; VM= Virtual Machines; and EM= External Monitor
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Lessons Learned

Control flow integrity results in few or no false positives 

DKOM rootkits can be detected by  monitoring data 
structures and legitimate modifier functions

Return oriented rootkits can be detected if the instructions 
they push on stacks change the normal flow of execution

1

2

3
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Challenging Solution

Monitor the call graph and data structure 
modifications

Monitoring the entire control graph of the 
kernel will cause a very high overhead
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Statistics for Kernel 2.6.32.44

Description Value

Total functions in source code (approx.) 232312

Total functions excluding 
documentation, scripts and drivers 
(approx.)

107094

Graph size (total edges) 394212

Callers 81919

Callees 75426
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A Routine Call Graph of the “fs” Subsystem
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Proposed Solution:
Traffic-Based Approach

• Based on Hamou-Lhadj’s empirical studies on 

identifying important components in large systems:

– High traffic vs. Low traffic components

– Only a small number of functions make the largest 

number of calls

– Priority monitoring should focus on only these functions

– Secondary monitoring: Other functions can be added 

as needed
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Identifying Important Functions

• Look for functions that generate the largest number of 

calls – Hamou-Lhadj’s  work on identifying utilities in 

large systems

• Network-based techniques: Betweeness centrality 

analysis

• Look for the functions of most targeted components

• Knowledge oriented techniques: Study sensitive paths 

where attacks have the highest information gain
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Reducing Overhead Using Calling 
Relationship
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Approximately half of 
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majority of the calls
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Reducing Overhead Using 
Betweenness Centrality

Graph reduced to 

just the nodes with 

high Betweenness

Centrality 
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Reducing Overhead Using Key 
Components

Distribution of 2009-2011 Linux vulnerabilities across components.
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Vertex Framework
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Preliminary Results

26

• Generated static and dynamic call graph for kernel

• Tested on a home grown rootkit and KBeast rootkit

– Syscall hooking, key logging, process hiding, directory 

hiding, port hiding and backdoor shell access

• Both rootkits were detected immediately—unknown 

functions hooked to pointers

• Some false positives due to missing edges due to 

function pointers



Ongoing Tasks

• Studying the strategies for reducing 

graph size

• Developing correlation algorithms 

• Developing a prototype tool

• Conducting experiments with real 

rootkits
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Input For the Tracing Team

• Function calls and data structure tracing

• Notifications for global data structure modifications

• Develop a kernel stack monitor

• Develop a security mechanism against tampering of 

the monitoring system

• Easy to use interface to turn on and off probes
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System Call Based Models
For Applications
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System Call Sequence Modeling

• Models an application’s normal behavior from 

system calls sequences:

– Sliding Windows [Forrest 1997, Warrender 1999]

– Rule Based [Tandon 2003, Petrussenko 2010]

– Neural Networks [Ghosh 1999]

– Hidden Markov Models (HMM) [ Hoang 2003, Hu 2009]

– Finite State Automata (FSA) [Wagner 2001, Sekar 2001]

– Variable length N-gram [Wespi 1999, Jiang 2002]

– Statistical Techniques [Ye 2001, Burgess 2002]

– Call Stack Techniques [Feng 2003]

– Bag of System Call Technique [Kang 2005]
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Attack sequences are very 

similar to the normal 

system call sequences–

false positives.

Replace the system call 

arguments and return 

values. For example, open 

a malicious file using the 

system call arguments of 

the “open()” system calls—
arguments and calls.

Insert some “no-op” system calls (e.g., 

read() with 0 byte parameter) between 

the malicious system call to look like 

the legitimate sequence—which calls 
are they?

Imitate legitimate system call 

sequences that execute 

malicious code—which calls 
are they?

Equivalent malicious 

system calls. For example, 

after an open(), replace a 

legitimate read() with a 

mmap() that reads 

memory—false positives.

Limitations of 

System Call 

Sequence 

Models
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Research Questions

How much code coverage provides a complete learning 
model to remove/reduce false positives?

How can system call and argument models be efficiently 
combined?

Are there system calls more important than others?
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How much code coverage provides a 
complete learning model to 

remove/reduce false positives?
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Firefox Dataset

Test 

Framework

Passing 

Test 

Cases

Passing 

Test 

Files

Firefox’s Code Coverage Avg. 

System 

Calls Per 

Trace

Statements 

(%)

Functions 

(%)

XPC Shell 600 600 39.8 39.6 18,479

JS Engine 2686 2686 41.3 40.2 2,534

Mozmill 34 34 47.1 46.1 16,226

Mochitest-

a11y 
1369 41 49.7 48.7 770,966

Mochitest-

chrome
1160 84 50.9 49.6 701,076

Mochitest-

browser-

chrome

2913 146 52.1 50.6 856,120
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System Call Sequence Model

Window size = 6. 

Framework

Total number of 

sequences in 

each framework

Total number of 

unique sequences  

in each framework

Percentage of 

unique 

sequences  in 

each framework

XPC Shell 11,084,489 29,871 0.27%

JS Engine 6,793,621 3,771 0.06%

Mozmill 551,516 1,106 0.20%

Mochitest-a11y 31,609,380 10,440 0.03%

Mochitest-

chrome
57,487,806 11,069 0.02%

Mochitest-

browser-chrome
124,136,624 11,595 0.01%
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Impact of Coverage on the 
Model’s completeness

Mozilla Firefox Data Coverage
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• 67,852 unique sequences identified from 231,663,436 sequences

• Model size is 1,331 KB

36



How can system call and argument 
models be efficiently combined?
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Combine System Call Sequence and System Call 
Argument Model

Healthy 

Trace Files

Results

ResultsSystem call 

arguments

Final 

Result

System Call 

Sequence 

Based Model

System Call 

Argument 

Based Model

Testing 

Trace 

Files

System call 

sequences

Harmoni

zation
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Sys_open() Argument Model Construction

Normal

Trace

Files

Sys_open() 

Argument Model

File from the 

sdirectory?

sys_open(filename, flag, mode)

Extract file directory 

and names

Add

Sys_open() 

sequence Model
Merge
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Are there system calls more important 
than others?

40



Frequent System Calls

System Call Name Total Count Percentage

sys_write 181,115,332 78%

sys_read 9,125,195 4%

sys_llseek 5,669,487 2%

sys_fcntl64 4,358,035 2%

sys_futex 4,209,934 2%

sys_fstat64 4,209,034 2%

sys_stat64 3,603,088 2%

sys_open 2,932,515 1%

sys_gettimeofday 2,897,824 1%

sys_close 2,809,496 1%

sys_madvice 2,742,715 1%

sys_mmap_pgoff 2,612,093 1%

sys_munmap 2,068,300 1%

41



Thank you & your questions
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Resources for Rootkits 

• http://www.phrack.org

• http://www.antiserver.it/Backdoor-Rootkit/

• http://www.l0t3k.org/tools/Rootkit/

• http://packetstormsecurity.org/UNIX/penetration/rootkits/

• http://www.securityfocus.com/

• http://www.antiserver.it/Backdoor-Rootkit/

• http://www.zone-h.org/en/download/category=23/

• http://www.rootkit.com (mostly Windows based)

• http://www.blackhat.com/html/bh-media-archives/bh-multi-media-
archives.html

Disclaimer: Presenter doesn’t take responsibility of any malicious 
activity that would happen on your system when you play with these 
resources  ☺.

Source: [Pelaez, 2004]
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